

THE REMOVAL OF MICROPLASTICS FROM SEWAGE SLUDGE BY HYDROTHERMAL CARBONIZATION METHOD

<u>Małgorzata Wilk</u>, Zuzanna Prus, Klaudia Czerwińska, Maciej Śliz, Joanna Mikusińska, Jagoda Worek, Joanna Chwiej, Kamil Kawoń, Katarzyna Styszko

Rome, 9 September 2024

SS4OS-1: Green deal for climate and resource conservation - energy efficiency, GHGs reduction, circular economy - synergy or exclusion?

- Introduction
 - Microplastic presence in environment
 - Microplastics' characteristics
- Material:
 - Sewage sludge
 - Hydrothermal slurry from sewage sludge
- Methods of Microplastics' identification:
 - FTIR
 - Raman microspectroscopy
- Results
- Conclusions
- Aknowledgements

Microplastics' cycle in environment

Wordwide microplastics' presence in sewage sludge

Microplastics removal methods

MPs behaviour during hydrothermal carbonization process

- to assess the efficiency of MP removal by HTC process
- to perform hydrothermal carbonization process of sewage sludge
- to observe the shape and size of MPs after the hydrothermal carbonization process of sewage sludge
- to observe MPs in sewage sludge was made for comparison

Hydrothermal carbonization proces (HTC) • • •

Conditions of hydrothermal carbonization process:

- Temperature: 200 °C
- Residence time: 2 h

Before HTC process

After HTC process

MPs identified in sewage sludge

e

3

MPs identified in hydrochar

Spectra of microplastics in sewage sludge before HTC process classified PE

Spectra of microplastics in hydrochar (after HTC process) classified PE

Conclusion

- The efficiency of the removal of microplastics from sewage sludge depends on the treatment techniques applied at the wastewater treatment plants
- Microplastics undergo degradation during hydrothermal carbonization process
- MPs particles identified in hydrochar derived from sewage sludge were significantly defragmented
- The efficiency of microplastic removal resulted in 75%
- Hydrothermal carbonization is an efficient method in the degradation and removal of microplastics in sewage sludge

Acknowledgements

The research was founded by the National Science Centre, Poland under the project no. 2021/41/B/ST8/01815. The authors would like to express thanks to the proprietor of the experimental apparatus EKOPROD Ltd. in Bytom.

THANK YOU FOR YOUR ATTENTION

Contact:

Małgorzata Wilk Associate profesor

e-mail: mwilk@agh.edu.pl

an Open Access Journal by MDPI	IMPACT FACTOR 3.2 CITESCORE 6.2
Biomass, Biofuels and Waste: 2nd Edition	
Guest Editor	
Prof. Dr. Małgorzata Wilk	
Deadline	
20 November 2024	Specialsue
mdpi.com/si/191016	Invitation to submit