

Toxicity of Hydrochars Derived from AGH UNIVERSITY OF KRAKOW The Hydrothermal Carbonization of Sewage Sludge Małgorzata Wilk*, Maciej Śliz, Klaudia Czerwińska, Joanna Mikusińska

MOTIVATION

Toxicity towards aqueous organisms for the aqueous extracts

Hazard classification system for waste discharged into the aquatic environment

ΤU	TU Toxicity	
< 0.4	no acute toxicity	I
0.1 – 1	slight acute toxicity	П
1 – 10	acute toxicity	Ш
10 – 100	high acute toxicity	IV
> 100	very high acute toxicity	V

 $TU = \frac{1}{EC_{50}} \cdot 100\% - \text{toxicity unit}, EC_{50} \text{ or } IC_{50}$ EC₅₀ - medial immobilization concentration, mg/L IC_{50} – medial inhibitory concentration, mg/L

Toxicity towards aqueous organisms

	Aquatic	Inhibition of	Standard	EC/IC ₅₀	TU			
	extracts	undiluted sample	deviation	%				
		%						
12205	Daphnia magna - freshwater crustacean, OECD 202							
	(2004)							
2. 5. 18	AEI	100.0	0	28.1	3.6			
Section 1	AEII	100.0	0	27.7	3.6			
	AEIII	100.0	0	24.5	4.1			
	Vibrio fischeri - luminescent bacteria, ISO 11348-3:2007							
S LG	AEI	87.3	0.6	30.0	3.3			
	AEII	83.0	1.0	35.0	2.9			
	AEIII	73.7	2.3	47.0	2.1			
R	Lem	mna minor - aqueous plant, OECD 221 (2006)						
	AEI	-70.5	7.4	-	-			
	AEII	-40.6	9.2	-	-			
A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O								

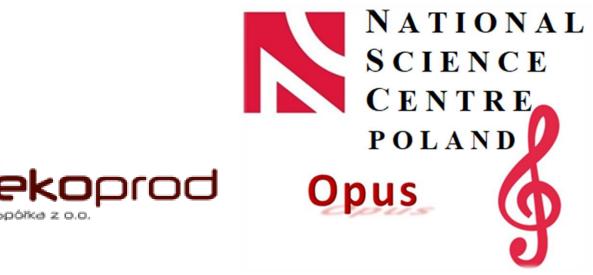
1. The AEI, AEII and AEIII aqueous extracts of hydrochar are toxic to aqueous organisms (freshwater crustacean - Dagma magna) and luminescent bacteria - Vibrio fischeri), but nontoxic towards aqueous plant (*Lemna minor*).

- 2. The AEI, AEII and AEIII aqueous extracts of hydrochar on plants indicate their stimulating effect on monoco- and dicotyledonous plants (Horodeum vulgare and Sinapis alba).
- 3. Hydrochar (H100) was toxic to all tested plant species, but lower concentration of hydrochar in soil, 1 and 10% (H1 and H10), indicate some potential for supporting the growth of dicotyledonous plants.

Toxicity towards plants for the aqueous extracts

EC/IC_{50.} for aqueous extracts

Sample	Control	AEI	AEII	AEIII		
Horodeum vulgare - monocotyledonous plant, EN ISO 18763:2020-10						
Medial root length, cm	6.1 ± 1.1	5.4 ± 1.6	6.6 ± 0.7	6.6 ± 1.0		
Medial shoot length, cm	0.9 ± 0.6	1.2 ± 0.9	1.6 ± 0.9	1.4 ± 0.9		
Shoot growth inhibition, %		11.5	-8.2	-8.2		
Rooth growth inhibition, %		-33.3.6	-77.8	-55.6		
Sinapis alba - dicotyledonous plants, EN ISO 18763:2020-10						
Medial root length, cm	2.1 ± 1.6	2.2 ± 1.1	2.6 ± 1.5	3.1 ± 1.3		
Medial shoot length, cm	2.0 ± 1.2	2.6 ± 1.5	3.4 ± 0.9	3.0 ± 1.1		
Shoot growth inhibition, %	a 	0	-2.3	2.3		
Rooth growth inhibition, %	-	-30.0	-70.0	-50.0		
Lepidium sativum - dicotyledonous plants, EN ISO 18763:2020-10						
Medial root length, cm	4.4 ± 1.1	4.4 ± 1.6	4.5 ± 0.7	4.3 ± 1.0		
Medial shoot length, cm	3.8 ± 0.4	3.7 ± 0.4	3.7 ± 0.7	3.8 ± 0.7		
Shoot growth inhibition, %		0	-2.3	2.3		
Rooth growth inhibition, %	21 <u></u>	2.6	2.6	0		


Toxicity towards plants for the hydrochar

EC/IC₅₀ values for hydrochar

		• •				
9 Samuel	Sample	Control	H1	H10	H100	ACKNOWLE
	Horodeum vulgare - monocotyledonous plant, EN ISO 18763:2020-10					
	Medial root length, cm	6.1 ± 1.1	5.8 ± 1.5	3.1 ± 1.2	3.2 ± 1.3]
	Medial shoot length, cm	0.9 ± 0.6	0.8 ± 0.4	0.1 ± 0.3	0.1 ± 0.2	The research was founde
. W	Shoot growth inhibition, %	_	4.9	49.2	47.5	Centre, Poland und
h. Gin	Rooth growth inhibition, %	_	11.1	88.9	88.9	2021/41/B/ST8/01815. Th
	Sinapis alba - dicotyledonous plants, EN ISO 18763:2020-10					express thanks to the pro
	Medial root length, cm	2.1 ± 1.6	2.6 ± 1.3	2.7 ± 0.7	1.3 ± 0.8	apparatus EKOPROD Ltd.
A PE	Medial shoot length, cm	2.0 ± 1.2	1.9 ± 1.0	2.1 ± 0.7	0.6 ± 0.4	
R	Shoot growth inhibition, %		-23.8	-28.6	38.1	
A A	Rooth growth inhibition, %		5.0	-5.0	70.0	
	Lepidium sativum - dicotyledonous plants, EN ISO 18763:2020-10					
8	Medial root length, cm	4.4 ± 1.1	6.0 ± 1.2	4.5 ± 2.1	2.8 ± 1.4	
9	Medial shoot length, cm	3.8 ± 0.4	4.0 ± 1.2	2.2 ± 1.1	1.4 ± 0.9	ekoproc
	Shoot growth inhibition, %	—	-36.4	-2.3	36.4	
	Rooth growth inhibition, %	55t	-5.3	42.1	63.2	

EDGEMENTS

led by the National Science the project der no. he authors would like to roprietor of the experimental d. in Bytom.

WWTR 3: Waste and wastewater treatment and reuse 3, 11 Wednesday 2024